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SUMMARY

A three-dimensional, geometrically nonlinear two-node Timoshenko beam element based

on the Total Lagrangian description is derived. The element behavior is assumed to be

linear elastic, but no restrictions are placed on magnitude of finite rotations. The

resulting element has twelve degrees of freedom: six translational components and

six rotational-vector components. The formulation uses the Green-Lagrange strains
and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for for

bending-stretching and bending-torsional coupling effects without special provisions.

The core-congruential formulation (CCF) is used to derived the discrete equations in a

staged manner. Core equations involving the internal force vector and tangent stiffness

matrix are developed at the particle level. A sequence of matrix transformations carries

these equations to beam cross-sections and finally to the element nodal degrees of free-
dom. The choice of finite rotation measure is made in the next-to-last transformation

stage, and the choice of over-the-element interpolation in the last one. The tangent

stiffness matrix is found to retain symmetry if the rotational vector is chosen to mea-

sure finite rotations. An extensive set of numerical examples are presented to test and

validate the present element.
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L. A. CRIVELLI AND C. A. FELIPPA

1. INTRODUCTION

The computer-based geometrically-nonlinear analysis of flexible three-dimensional structures

has attracted considerable interest in recent years. In the aerospace field, part of this atten-

tion comes from establishing challenging and ambitious goals for space research, such as the

space station, space-based antennas for improved communications, space-based telescopes, so-

lar arrays, and a large variety of similar devices which have been given detailed consideration

in various proposals for future space developments. In mechanical engineering, interest has

emerged from the competition to obtain reliable, accurate and inexpensive manufacturing pro-

cedures, especially in the development of the new generation of robots capable of performing

high precision tasks such as microspot welding and assembly of orbiting structures. Further

interest comes from analysis and design of high-performance aircraft, helicopter blades and

turbomachinery. These applications have motivated the development of more physically re-

alistic computational models of large flexible structures that exhibit pronounced geometric

nonlinearities.

Three kinematic descriptions have been used in geometrically nonlinear finite element

analysis: Total Lagrangian, Updated Lagrangian and corotational. The present work follows

the Total Lagrangian (TL) description, but in an unconventional variant that constructs

the nonlinear finite element equations in a staged fashion. This variant is called the core-

congruenfial formulation and identified by the acronym CCF in the sequel. An account

of this methodology is presented in a recent review paper by Felippa and Crivelli) This

review concludes that a key advantage of the CCF for constructing TL elements is that it

helps establishing consistency by avoiding the premature introduction of drastic kinematic

approximations.

The main ideas behind the CCF can be traced to a 1973 paper by Rajasekaran and

Murray 2, who examined critically the pioneer work on the Total Lagra.ngian description

by Mallett and Marcal 3. The 1974 discussion of Rajasekaran-Murray's paper by Felippa 4

established general expressions for the finite element equations that appeared at various

variational levels. Further historical details are given in the review by Felippa and Crivelli. 1

This paper uses the CCF to derive the finite element equations of a TL three-dimensional

Timoshenko beam element that can undergo arbitrarily large rotations. First, we derive the

governing differential equations encountered in the geometrically nonlinear static structural

analysis of three-dimensional beams. Next, the finite element counterparts are obtained by

discretizing the physical degrees of freedom. Our main assumption is that the beam behaves
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as a linear hyperelastic isotropic medium, which allows us to write its internal energy as

a quadratic function of the finite strains. We obtain the equilibrium equations from the

stationarity condition on the first variation of the total energy. Similarly, we obtain the rate

or incremental equations from the second variation of the total energy.

The CCF derivation of the governing equations of motion proceeds through two phases:

a core phase followed by a transformation phase. In the initial phase core energy, residual

and tangent stiffness matrices as well as internal force vectors, are obtained independently of

any specific choice used to represent or par_ametrizethe motion. These matrices and Vectors

pertain to individual particles. They do not depend on discretization decisions, such as

element geometry, shape functions and selection of nodal degrees of freedom. To emphasize

this independence, the term core was coined: In the transformation phase, these C0re forms

are gradually specialized to particular element instances. This specialization is achieved by

the application of one or more transformation stages that progressively "bind" particles into

lines, areas or volumes through kinematic constraints, and eventually link the element domain

to the nodal degrees of freedom. The choice of specific parametrizations for finite rotations

may be deferred to latter stages.

What are the differences between the CCF and the more conventional Total Lagrangian

formulation of nonlinear finite elements? If kinematic exactness is maintained throughout, the

final discrete equations are identical. But in geometrically nonlinear analysis approximations

of various kinds are common, especially in structural elements with rotational degrees of

freedom such as beams, plates and shells. In the conventional, one-shot formulation it is

often difficult to assess a priori the effect of seemingly innocuous approximations "thrown

into the pot," and a posteriori exhaustive testing of complex situations becomes virtually

impossible. Sample: how does the neglect of higher order terms in the axial deformation of

a spinning beam affects torsional buckling?

The staged approach taken in the CCF permits a better control over such assumptions.

The core equations are physically transparent, clearly displaying the effect of material be-

havior, displacement gradients and prestresses. In the ensuing transformation sequence the

origin of each term can be exactly traced, and on that basis informed decisions on retention

or dropping made.

Another important advantage of the staged approach is the precise identification (and

avoidance) of kinematic choices that lead to unsymmetries in the tangent stiffness. In beams,

plates and shell elements such a symmetry loss is linked to the choice of the finite:rotation
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L. A. CRIVELLI AND C. A. FELIPP_. 4

parametrization (Euler angles, Euler parameters, rotational vector, direction cosines, etc).

This decision can in fact be postponed to the final stages, and changed if necessary with-

out affecting "kernel" forms derived in previous stages. This nesting has obvious beneficial

influence on element programming modularity.

2. PREVIOUS WORK IN NONLINEAR SPACE STRUCTURES

Early work in the area of orbiting and free-flying structures dealt with the problem of rigid

spacecrafts with flexible appendages attached to their core. 5 In this case, the motion of the

system was obtained by superposing a given number of linear elastic modes to the overall

motion obtained considering the structure as made of interconnected rigid bodies. This

procedure has been called the hybrid coordinate method. 6 The flexible motion --assumed

small-- is then described with respect to frames attached to the underlying rigid core motion.

When this procedure is to be applied to structures with distributed flexibility --those not

having a distinct rigid core--- a question that immediately arises is how to choose the reference

frame. One idea is to define a floating or unattached _frame that is optimum in some sense.

Two frames were proposed by De Veubeke, r one that minimizes the relative kinetic energy

and another that minimizes the deformation energy. The first choice is shown to correspond

to Tisserand's conditions of zero relative momentum and angular momentum, i.e., the rigid

body modes are found to be fixed in this frame. However, this choice introduces some practical

difficulties, especially in the case where there are lumped sources of kinetic energy, such as

rotating masses or gyros. Further work has also been done to include the effects of spinning

rotors. 8 The hybrid coordinate method has the advantage that the equations of motion are

represented in a form similar to rigid body equations. 9 This type of moving frame has also been

called mean axis system l° and used to implement finite elements representations. Extensions

of the mean axis formulation to flexible multibody system dynamics can also be found. 11 De

Veubeke T shows that the use of the minimum deformation energy criterion allows the relative

displacement to be exactly represented by an expansion in natural elastic vibration modes

and leads to a simpler implementation. In any case, introducing a floating frame requires

constraint equations to be added, because they require the definition of additional variables

that cannot be obtained directly from the dynamics of the system.

A more subtle problem associated with the floating frame formulation is found in con-

nection with spinning free-free beams. 12 In this case, nonlinear effects produce a geometric

stiffening due to the spin-induced longitudinal stretch. The resulting axial force, which cannot

be considered infinitesimal, affects the beam bending stiffness, showing that the uncoupling
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between rigid body modes and elastic modes no longer holds. Several attempts have been

made to include these and other effects by higher order corrections to the theory, la This

leads to cumbersome expressions for the matrices entering the governing equations of motion,

without apparent advantages with respect to a full nonlinear theory.

With increasing interest in control-structure interaction, the floating frame approach has

gained new attention, especially when the flexible component is attached to a large rigid mass

and there is a hierarchical control system that keeps the elastic deformation small. A typical

example is that of a flexible beam or antenna attached to the space shuttle. I_: In this Case,

the shuttle can be regarded as a rigid body to which the reference frame is attached, while

the flexible part is discretized using finite elements. The relative equations of motion of the

flexible part are linear whereas the nonlinearity comes from the coupling with the rigid body

motion. Assuming that the inertia of the flexible part is small compared to the inertia of

the shuttle, the flexible motion can be regarded as a perturbation to the rigid body motion.

This perturbation technique allows the analyst to define a rigid-body maneuvering strategy

independently of the elastic behavior. The linearity of the elastic component is required to

construct an optimal feedback control scheme for vibration arrest. This methodology has

been used to model the SCOLE experiment. 15

When performing large-rotation dynamics analysis using the floating frame approach, it is

important to note that the coupling with the rigid body motion must come through the inertia

components, because the deformation components have been intentionally uncoupled from

it. Thus, the inherent nonlinearity of the problem carries over to the inertia terms, leading

to fully populated nonlinear mass matrices that ruin the sparsity property of conventional

finite element analysis. For large systems, this is computationally inefficient and prohibitive in

terms of storage, forcing analysts who use this approach to look for reduction methods. Thus,

most of the programs based on this approach use linear modes of the free-free structure in

the undeformed configuration to condense the problem to a few degrees of freedom. Another

approach is to use a fixed frame for the inertial terms only. 16,17

Although the single frame approach has been used extensively in spacecraft, its appli-

cations are limited to small elastic deformations and thus mainly confined to the modeling

of free-vibration dynamics. When the primary concern is large deflections, as in the case of

stability and/or postbuckling analyses, the relative rotations between structural components

are no longer infinitesimal. It is also desirable to preserve the structure of the finite element

equations for problems of dynamic instability. This has motivated the development of the
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corotational description. This description retains multiple reference frames relative to which

the elastic deformation of portions of the structure are described, is In its combination with

finite elements each one has a co-moving attached Cartesian frame. The motion of this rigid

frame is used to decompose the element displacements into rigid body and deformatlonal

components. Because the latter are assumed small in each element, small relative deforma-

tion measures may be used. This model is intimately related to the dlscretization process,

i.e., the finite element discretization is done before the _eStablishment of the equations of

motion or the definition of the variational principle. This procedure has been extended to

dynamics analysis of space frames ]9 but only limited to explielt integration schemes, which

do not require the explicit computation of the stiffness matrix.

Because of the small relative deformation assumptions, the expressions of the finite element

matrices in the corotational frame can be those corresponding to a linear finite elemen t model,

optionally corrected by geometric stiffness effects. An interesting question that may be raised

is: Is it possible to obtain a set of external transformations that project these matrices into

the global frame? This will have the:advan_tage that existing finite elements can be taken as a

"core" component which can be transformed to the global equations by appropriate external

manipulations. The answer given by Rankin and coworkers is partially positive. 2°,2] This was

done by enforcing rotational invarianee of the internal force, which in turns translates into the

satisfaction of rotational equilibrium. This technique relies on the use of a projector operator

which removes the rigid rotations. However, the kinematics properties of the eorotated frame

still depend on a subset of element properties such as dimensionality and the number of nodal

points.

Another way to achieve the projection goal is to use a finite strain theory from the out-

set. In this case, the effect of large rotations is automatically t_en into account. Simo

and coworkers 22,2s and Cardona 24 have exploited the first Piola-Kirchhoff (PK1) stress, for

which the conjugate strain is simply the deformation gradient. This leads to a relatively

straightforward formulation of the discrete equilibrium equations, from which an incremental

solution procedure is obtained. Downer Park and Chiou 25 have constructed a corotational

formulation based on Cauchy (true)stress increments and appliedto the dynamic analysis of

spinning beams, with emphasis on energy and momentum conserving algorithms.

The present work differs from previous ones in the following respects:

1. The Total Lagrangian (TL) description is used for 3D Timoshenko beam elements in

conjunction with the second Piola-Kirchhoff (PK2) stress and the Green-Lagrange (GL)
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strain. A symmetric tangent stiffness is obtained for a particular choice of the finite-

rotation measure.

2. No kinematic restrictions are placed on the overall rotations. Only a mild restriction

applies at the element level: the relative rotations within an individual beam element

should not exceed 360 ° .

3. The CCF is used in the element derivation.

Sections 3 introduces basic terminology while Sections 4-6 describe the CCF in general

terms. Tlae formulation is then applied to (he three-dimensional beam element in Sections

7-11. Section 12 present numerical examples.

3. NONLINEAR MATRIX EQUATIONS

In this section we summarize the discrete governing equations of a geometrically nonlinear

structure expressed in terms of a set of generalized coordinates q that for the moment are

left unspecified. The resulting quadratic forms in q contain deformation-dependent kernel

matrices collectively called stiffness matrices. This deformation dependency changes with the

variational level. In the sequel we examine variational levels 0, 1 and 2, otherwise identified

as the energy, residual-force equilibrium, and incremental levels, respectively.

Variational Level O: Potential Energy. The internal energy U is a nonlinear function of the

generalized coordinates formally expressable as

1 T..U qTp0.U=_q v_ q+ (1)

The component of U that is linear in q is the prestress force vector p0. The component of U

that is quadratic and higher in the freedoms q is assigned the kernel K U. This is a symmetric

matrix with dimensions of stiffness, called the energy stiffness. The total potential energy is

J=U-qTp, (2)

where p is the vector of applied generalized forces conjugate to q. Throughout the present

work the applied loads p are assumed to be conservative and deformation independent.

Variational Level i: Residual Force Equilibrium. The first variation 6U = f T 6q of the strain

energy defines the internal force vector f = OU/Oq. Under certain conditions studied later

this vector may be expressed as

OU

f= 0-"q = Kr q + p0. (3)
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This relation defines the secant stiffness matriz K r, which (if it exists) is generally unsym-

metric. The force residual is the difference between internal and external forces:

v

v

m

==

v

t

r=f-p. (4)

Setting r to zero gives the discrete equilibrium equations.

Variational Level & Incremental Equilibrium. The force equilibrium equation r = 0 is

nonlinear in q. This equation is usually treated numerically by continuation procedures that

search for solutions in the neighborhood of a previously computed equilibrium point. To

implement this technique the residual is expressed as a function of q and a continuation

parameter A that parametrizes the applied forces:

r(q,A) = f(q) --p(A) = O.

Differentiatingwith respect to A yieldsthe first-orderrate equations

(5)

r I = Kql _ pl = 0, (6)

where primes denote differentiation with respect to A. Multiplying by dA and converting the

d's to A's gives the popular incremental form K Aq = Ap.

The tangent stiffness is fundamental in incremental-iterative solution methods and stabil-

ity analysis, whereas the secant stiffness (by itself or embedded in the internal force vector f)

is important in pseudo-force methods. The energy stiffness enjoys limited application per se

but has theoretical importance as source for the other two. In the sequel we use the notation

K t_vei to collectively designate these three matrices.

4. CORE PHASE OF CCF

The core phase of the CCF establishes nonlinear response equations at the particle level,

using the displacement gradients as degrees of freedom. The resulting equations depend

on the mathematical model under consideration _ bar, beam, plate, shell, 3D continuum,

etc._ insofar as the form of the internal energy density, but are otherwise independent of

finite element discretization decisions.

Under the effect of conservative loads the structure displaces from a reference configuration

Co, with particle coordinates Xi, to a variable current configuration C, with corresponding

particle coordinates zi. The particle displacements ui = zi -Xi are collected in u. Let the
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state of strain at d be characterize by n° strain components ei collected in array e, and let

the no conjugate stresses be si, collected in array s.

We assume that strains stay small so that the structure remains linearly elastic. Using

the summation convention the elastic stress-strain relations may be written

o Eqei, s s °si = s i + or = + Ee, (7)

where s o are stresses in C0 (stresses that remain if ei = 0, also called prestresses) and Eli = Eji

are elastic moduli arranged as a symmetric matrix E in the usual manner. The strain energy

density may be written

o 1 = eTs 0 2!eTEe"/4 = e/s i + _eiEiiei + (s)

The total strain energy U is obtained by integrating (8) over the structure volume: U =

fyo Lt dVo; the integration taking place -- as can be expected in a TL description -- over the

reference configuration geometry.

Introduce now the ng displacement gradients g,nr, = Oum/OX,. These are alternatively

identified as gi (i = 1, 2,... ny) so they can be conveniently arranged in a one-dimensional

array g. Following Rajasekaran and Murray 2 and Felippa 4, assume that the strains ei are

linked to the displacement gradients through matrix relations of the form

1 T
ei = hTg+ _g Hig, i = 1,2,...no (9)

where h i and Hi are arrays of dimension ng x 1 and ng x nu, respectively , with Hi symmetric.

If the Green-Lagrange (GL) strain measure is chosen, all Hi are independent of g, a restriction

enforced throughout this work.

Denote by S U, S r and S the energy, secant and principal tangent core stiffness matrices,

respectively, where the qualifier "principal" is explained in Sections 5-6. Symbols @ and _0

denote the core counterpart of the force vectors f and p0. With this notation the first and

second variations of the strain energy density can be expressed as

(I0)

_52U = 6gTS r _g + (_gT_Srg + (62g)T_ = 6gTS 6g + (_52g)T(_.

These variational equations implicitly determine S", @ and S from S v and _0.

(II)
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5. SPECTRAL FORMS

General expressions for S U, S _, S and cI, are given in Felippa and Crivelli I where it is noted

that both S v and S _ may have arbitrary coefficients. More compact expressions called spectral

forms (because of their formal similarity with the spectral decomposition of a matrix as the

sum of rank-one matrices) can be presented at the cost of some generality. Introduce the

vectors

1 0ei

ci = hi + _Hig, bi = _-g = hi + Hig. (12)

Then ei = eTg, siei = EiigTcTcig, and the spectral forms, with the summation convention

implied throughout, are

S u = Eijeie i + s,°-Hi, (13)

1 o st)Hi, (14)S r -- Eijeicj -}- ](s i -}-

= sibi, (15)

0_

S = 0-'g" = Eijbib/+ siHi = SM + Sap. (16)

The decomposition (16) of the principal tangent core stiffness S should be noted:

1. The material stiffness matrix SM = (Osi/Og)bi = Eijbib T, which depends on the

constitutive coefficients and displacement gradients.

2. The principal geometric stiffness matrix Sap = si(Obi/Og) = siHi, which depends on

the current PK2 stresses.

The second variation (11) of the internal energy density has S = SM + Sap as kernel

of the quadratic form in 6g. The core internal force • also appears in the inner product

(62g) T _. This second term may either survive or drop out depending on the relation of g

with the target physical or generalized coordinates chosen in the CCF transformation phase,

as discussed in the following section.

If the term drops out, S becomes the tangent core stiffness and the qualifier "principal"

becomes superfluous. If the term survives, it contributes to what we call the complementary

geometric stiffness.

6. TRANSFORMATION PHASE OF CCF

The core stiffness matrices and force vectors given in (13)-(16) pertain to each material

particle of the structure. They can be used to construct physical stiffness matrices and
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force vectors through a process involving core-to-physical transformation and integration.

This transformation phase of the CCF converts the core equations to discrete equations in

terms of physical or generalized degrees of freedom collected in vector q, which defines the

mechanical behavior of a reference volume V0 (which may specialize to a line or area domain).

The transformation process yields stiffness matrices K te_ei, internal force vectors f and

prestress forces p0. The effect of these transformations depend on the nature of the relations

between the source core variables g, and the target variables q, which for the moment are

assumed to be independent. Three possibilities exist.

Case I. Linear relation between g and q. We have g = Tq, or in indicial form gi = Tijqj,

where T is a transformation matrix independent of q. Invariance of U and its two variations

taken over the reference volume V0 yields

Kt_"_t=/voTTS'eVetTdVo, f =/v0 TT" dV0, p°=/voTT_°dVo. (17)

The stiffness transformations at all levels are congruential, which gives the standard CCF

its name. This is the case for continuum and structural finite elements that possess only

translational degrees of freedom. Two examples of such elements are given in the survey by

Felippa and Crivelli 1.

Case II. Nonlinear algebraic relation between g and q. We have g = g(q) or in index notation,

gi = gi(qj). Differentiating with respect to the qi variables yields

or 62g = (F 6q) _Sq,

c_gi

@i=_@j=TijSqj, or 6g=T_q,

2 0
02 gi _qj gqk + c3gi _ _- Fijt _qk,

_2 g i = cgqjcgqk _ 'Sqi

(18)

where (F_q) is the matrix Fijt _qt = Fiit @j; F being a cubic array. The second term in the

expansion of _52qi vanishes because the qi are assumed to be independent variables. Invariance

of 62U yields the tangent stiffness transformation

°

where the entries of Q are Qjk = Qkj = Fijk'_i; note that Q is symmetric because Fijk = Fik.i.

Integration of Q over V0 yields the complementary portion Kvc of the geometric stiffness

KG. The force vectors f and p0 are given by the last two expressions in (17) with T defined

in (18).
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What happens to K U and K_? They can be obtained, somewhat artificially, by defining

g = Gq where Gij - gi/qj with some care given to the limits qj -..* O. Then K U =

fro GTsuGdV0 and K * = fro TTS*GdVo" Because in general T # G one cannot expect

symmetry in the secant stiffness.

This case occurs in finite elements with degrees of freedom that axe fixed-axis rotations,

because plane rotations are integrable. Examples are provided by two-dimensional beams,

and plane stress elements with drilling freedoms with only in-plane motions considered.

Case III. Differential relation between 6g and _q. In this final case only the variations of g

and q can be connected:

6gi=Tij_qj, or 6g=T6q,

OTi# _qj _qk = Fijt _qj _qk or _2g = (F6q) _q (20)
62 =

Transformation equations (19) stillapplies for K and (17) for f and p0. But no integral

g = g(q) as in Case II exists. Consequently K u and K _, which need a "secant" relation

g = Gq, cannot be constructed. Furthermore Q is not necessarilysymmetric; a condition

for that being F/j_ = F/kj or OTi#/aqk = OTik/Oqj. Case Ill occurs when three-dimensional

finiterotations appear as degrees of freedom, as in the present development.

Up to thispoint the q have been assumed to be independent variables.But for complicated

elements, such as the present one, the CCF transformations are more conveniently applied

in stage8 because of the reasons noted in the Introduction. The target variables in one stage

become the source variables for the next one.

SVhat happens ifthe q are intermediate variablesin a transformation chain? Ifq are linear

in the final independent degrees of freedomvlali previOus formulas t/oid because Case I applies

to the remaining transformations, which are strictly congruentiai. But if the q are nonlinear

in v or only a n0nintegrabie differential relation exists," term (Ogi/Oqj)62qj Tij _2qj in the

second of (18) survives. The net effect is that the complementary geometric stiffness acquires

a higher order component, implicitly defined as the kernel of

/Vo OiTij 62qj dVo, (21)

This term cannot be resolved (meaning the explicit extraction of its stiffness kernel) until

the transformation chain reaches downstream variables that either are the final degrees of

freedom (and thus independent), or depend linearly on such. It is difficult to state detailed
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Figure 1: Reference Frames Used to Describe the Beam Kinematics.

rules that encompass all possible situations. Instead the treatment of the 3D beam element

transformations in Sections 9-11 illustrates the basic techniques for "carrying forward" terms

such as (21).

7. KINEMATICS OF BEAM DEFORMATION

The beam kinematics is based on two assumptionsi the TL description, and the Timoshenko

beam hypothesis: plane sections remain plane after deformation although not necessarily

normal to the deflected longitudinal axis. The beam is isotropically elastic with Young's

modulus:E and slaeax moduiusG: The reference°configuration of the_beam is straight-and

prismatic although not necessarily stress free. A local reference frame ni is attached to it,

with nl directed along the longitudinal axis (the locus of cross section centroids). Axes n2

and na are in the plane of the left-end cross section; these will be eventually aligned with the

• principal inertia axes to simplify some algebraic expressions. Along these axes we attach the

coordinate system {X1, X2, Xa }. This description is schematically shown in Figure 1.

We further define a set of moving frames, denoted by {hi, a2, a3}, parametrized by the

longitudinal coordinate X1. Initially these frames coincide with {nl, n2, ha}, and displace

l
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rigidly attached to the cross-sections of the moving current configuration, as depicted in the

same figure.

A beam particle originally at (X1, X2, Xs) displaces to

x(X) = xo(X,) + RT(x,)¢(X2,X3), (22)

where x0 describes the position of the centroid of the given cross-section, R is a 3-by-3

orthogonal matrix function that orients the displaced cross section, and ¢ is the cross-section

coordinate system cT = [ 0 X2 X3 ]. The displacement field is

u = x - X = u0 + (R T - I)¢. (23)

w

where u0(Xl)= xo(X 1)- X(Xl)is the centroidal displacement (see Figure 1).

In what follows 3 x 3 skew-symmetric matrices are consistently denoted by placing a tilde

over the symbol of their axial 3-vector symbol; for example:

-_ = spin (a) =

0 a3 --a2

--a3 0 al

a2 -at 0
{°'}a ---- a2

a3

= axial(h). (24)

The skew-symmetric curvature matrix _¢ is defined by _ = R(dRT/dx1 ), which is the rate

of change of the orthogonal rotation matrix R with respect to the longitudinal coordinate.

The curvature vector is 0¢ = axial (k). We shall also require later the variation of angular

orientation 60, defined as the axial vector of the skew matrix R6RT:

6_'0 = R6R T = -6RR T, 60 = axial(6®), (25)

To define the finite strain measures for the beam, we shall use the displacement gradient

matrix

gl] g12 g13]G= |g21 gm g23 =[gl g2
I.g31 gm g33

Ox

g3 ] = _ - I, (26)

where I is the 3-by-3 identity matrix, and gi are 3-component gradient vectors defined for

convenience. The 9-component gradient vector is gT = (gT gT gT). Next introduce the

three unit 3-uples hi, j = 1,2,3, such that the jo, term of hj is equal to one and the other



w

A THREE-DIMENSIONAL NONLINEAR TIMOSHENKO BEAM 15

two terms are equal to zero. With the help of these quantities, explicit expressions for the

displacement gradient vectors g can be given as

dUo du o

-" dX-'-'_ -}- RT_ -- -- "t- RT_TI¢,gl
dX1

g2 ""(RT _ I)h2, g3 = (RT _ I)h3.

(27)

The GL finite strain measure is defined as ½(G + G T + GTG). The only nonzero components

of this tensor are

1 T Hell -- hTgl q-_gl gl,

712 = 2e12 = hTgl + hTg2 + gTHg2, (28)

3"13 ---- 2e13 = hTgl + hTg3 + gTHg3,

where H is here the 3 x 3 identity matrix. By appropriate matrix expansion these strains

could be expressed in a form befitting the general expression (9) that involves the 9-vector g.

Observe that the orthogonality of R gives

1 T 1 2
e22 "- hyg 2 q- ]g2 g2 - R22 - 1 q- ](R21 Jr- (R22 -- 1) 2 q- R23) = .R22 - l + ½(2 - 2R22) = 0,

2c23 ---- hTg3 + hTg2 + gTg 3 = R32 -t- R23 Jr- R21R31 Jr- R22R32 - R32 -t- R23R33 - R23 = 0,

(29)

and similarly e33 = 0. This confirms that the only nonzero strains are (28).

The nonzero strains may be rewritten in a more physically suggestive form:

ell --" eb "4-el)

eb _- _ dXl J hi + 2 dXl '

duo7=712+713, _=R hl+dXlj,

3'12= 3"2+ v, = hy¢ +

3'13= 3'3+ V3= +

(30)

Here eb, ef are stretching and flexural normal strains, 3"2 and 3'3 represent bending-induced

shear strains, 3"2, 3"3 are torsion-induced shear strains, ¢ is the angular distortion vector, and

_ is the effective bending curvature defined as 7c_ = ¢_. The last term in ef represents a

squared-curvature contribution to flexure, which can usually be neglected.

From (8) and the fact that e22 = e33 = e23 = 0, the strain energy stored in the current

configuration is

U = ½ JL /A /4 dAo dX1,
0 0

with /4 = ½ [Ee21 + G (722 -{- 3'_3)] + s°lc11 -{- s_23'12 -{- 8°3713.
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8. CORE BEAM EQUATIONS

To link up with the general formulation of Sections 4-5, we arrange the nonzero GL strains

(28) as el = en, e2 = 712 and e3 = 713, and the associated PK2 stresses as Sl = s11,

s2 = s12 and s3 = sis. The elastic moduli are En = E, E22 = E33 = G, others zero. The

constitutive equations are S_l = s°_ +Ee_, s_2 = s°2 +G7_2, and s13 = s°3 +G7_3. Although

the displacement gradient vector g has 9 components, the formulas that follow are usually

expressed in more natural form by using the 3-component subvectors gi defined in (27).

The spectral core stiffnesses can be compactly expressed in terms of the vectors ci =
1

hi + 7Hg i and bi = hi + Hg i for i = 1, 2, 3, where no subscript is needed in H - I. Applying

(13) we obtain for the spectral energy stiffness

[ES_+G(S_+sU) GS_ GSU] [s°lH s°2H s°zH"
s = Gsf as1U 0 + s0 H 0 0

GS UT 0 GS U S°a H 0 0

(32)

where Slv = e,er, S_ = e2er, Ssv = eses T, Sf = e2e r and S5v = e3c T. At the force residual

level we obtain for sr a form similar to (32) except that the prestresses s°j, j = 1,2, 3 have

to be replaced by the midpoint stresses I 07(slj + slj) in the second matrix.

The internal force vector conjugate to 6g is • = S"g + _0 = _, + _, in which

{ sllbl s12b2 + s13b3
• _, = 0 , @,- = s12bl , (33)

0 sl3b 1

represent the contribution of the normal and shear stresses, respectively.

The principal core tangent stiffness matrix S = SM + SGp is obtained from (16).

material stiffness is

SM=

"ESl +G(S2 +S3) GS, GS5

GS T GS1 0

GS T 0 GS1

where S 1 = bib T, S2 = b2b T, $3 =

geometric stiffness is

bsb T, $4 = b2b T and $5 = b3b T.

The

(34)

The principal

SGp

s11H s12H SlsH"

sl2H 0 0

slsH 0 0

(s °, + Eel,)H (s°2 + aT,2)H

(s°, + GT,DH 0
(s°2 + G7,s)H 0

(s°2 + G71s)H J
0

0

(35)

w
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The contribution of (¢_2g)T_I) to the complementary geometric stiffness depends on the

target variables in the ensuing transformation phase described in the next three sections.

This phase is carried out in three stages:

1. From particle displacement gradients to generalized gradients w at each cross section.

An integration over the cross section area is involved.

2. From generalized gradients w to cross-section orientation coordinates z. The rotational

parametrization is introduced at this stage.

3. From cross-section orientation coordinates to finite-element nodal degrees of freedom v.

An integration over the element length, as defined by the displacement interpolation, is

involved.

The first two transformation stages are summarized in Tables 1 and 2, which together

also serve t0 define notation.

9. TRANSFORMATION TO GENERALIZED GRADIENTS

The first set of target variables are the generalized gradients w(X1) at each reference cross

section defined by the longitudinal coordinate X1. The components of w are indirectly given

through their first variation:

T

where 60, defined in (25) measures the variation of angular orientation. Because this is not

generally integrable for three-dimensional motions, it is not possible to express ® as a unique

function of the displacements.

The variation of gl is

dguo T~T d_O

6g I = _ + R _ _ + RT_ TK,_® + RT_'o_T_, (37)

where we used the relation2¢ _ = d60/dX1 +_0. On using the commutative law ab = bTa

and Jacobi's identity _'-'b= _I_ - l_h we may rewrite (37) as

_gl --'-- dd_uo RT_Td_O
dXl + _ + RTRT_$o" (38)

For the other gradient vectors we have _g2 = 6RTh2 = RT_'Oh2 = RThT$® and _g3 =
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RTIIT_o. These relations can be collected in matrix form as

{.}=[RT: =[wlw20 o
o o J 60 Ws

19

6w = W 8w, (39)

where I is the 3-by-3 identity matrix and Wi are 3-by-9 matrices. The second variation of g,

which is required for the complementary stiffness, is

(40)

T _ ~ T d60 dSO T ~ T

:g, = R 60¢ 72-, + RT_¢T_60 + 72-7,¢ 6OR

+ 60 T_R + 6'RT_Ts + R T_ T6 2_,

62g2 = 62RTi2, 62ga = 62RTis

At this point it is appropriate to introduce the following section resultants:

s b = Eeb,

1"= 1"2 + 7"3, v2 = G72h2, 1"3 = G73h3,

Is = f, ¢_T dA, _ = ¢_,

Ip = [aT hTIs [aa.2 Is [a2 +

(41)

= Aab q- 7:_0,

Q = _1 Ar + Qo,

.A,4 a = E I s tCe + .l_ °a,

.It4,= _2 G I p _ + ./_ Or,

Here 79, Q, .A,4_, and .A,4_. are axial forces, transverse shear forces, bending moments and

torsional moments, respectively, at the current configuration {7; _0, Q0, .A,4 o and .A,4°r are

similar quantities at the reference configuration Co; fll and f12 are transverse-shear and torsion

coefficients, respectively, that compensate for the actual shear stress distributions; and Is and

Ip are the cartesian and polar inertia tensors, respectively, of the cross section. Should the

axes X2 and X3 be aligned with the principal inertia axes the latter simplify to

[!0&2
0

0

0 ,

&3 I22+I33 0 0]
I,,,= 0 0 0 . (42)

0 0 0

IS --

Because the relation between g and w is of differential type the applicable transformation

rules are those of Case III in Section 6, and no energy or secant stiffness survives. Thus only

the internal force vector 7?. and tangent stiffness ,.q associated with w are derived below.
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Internal Force Vector

The generalized internal force vector is

21

where 7Z_ and "R.r are the contributions of the normal and shear stresses respectively. Detailed

I RT Q 1

A4_.
"R_r = • (44)

sTQ + ar, 4r

calculations 2e result in the following expressions:

7_ e -- _#T.Ad ¢ ,

_TA4,

Observe that the term _oRT¢ corresponds to the internal force obtained for a Total La-

grangian truss element. 4 In (44) and in the sequel we neglect the squared-curvature contri-

bution to flexure, consistent with the approximation introduced in equation (30).

For small deformations we have R _ I, ¢ _ lh, _:, _ _ and k.Ad¢ _ 0. If these

approximations are made,

I Phi

_T
h 1 .A,'f a

0

, _r -- dk4r .
_T
h_ Q

(45)

These expressions resemble the classic linearized theory equations. 26

Tangent Stiffness

For the tangent stiffness we have the decomposition introduced in Section 6:

S -- S M + SGp + SGC. (46)

Furthermore, since w is nonlinear in downstream variables, the complementary geometric

stiffness splits into two components:

SGC = SGCw + SVCz, (47)

where 5GCw and SGCz contains terms that depend on the firstand second variations, respec-

tively, of R and I¢. The notation is suggested by the fact that 8Gcw can be merged into "_GP
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to yield the geometric stiffness Sa,_ = SGp + ,-qGCw, which is associated with the generalized

gradients w and independent of the rotational parametrization selected in the next set of

target variables z. On the other hand, the kernel ,-qac_ cannot be extracted at the w level

and must be carried forward to the z levelbecause it is parametrization dependent.

Each of the components in (46)-(47) may be expressed as the sum of two contributions,

one from the normal stresses and one from the shear stresses:

_M -- _Ma q- _._Mr, _GP "-" 'SGPa "_ '-_GPr, 8GCz = SaCza + SGC=_, Z = w, Z. (48)

Material Stiffness

The generalized core material stiffness is given by the congruential transformation

|

Carrying out the algebraic manipulations one obtains 28

RT(ACdp T + _TIs_)R RT_Is¢

SM_ = E _bTIs_

symm

= SMa + _SMr. (49)

RT_IsK.e

~T N
¢ IS_C_ ,

N T
lC, Isx:,

(50)

f ARTI±R 0 ARTI±_
Ip Ip_

L symm ACrI±qb + _TIp_
[ 00], in which I±= 1 0 . (51)

0 1

Observe that the contribution RTdpdpTR is the core material stiffness of a Total-Lagrangian

bar element. 4

Geometric Stiffness due to Normal Stresses

It is convenient to work out together all geometric stiffness terms produced by the normal

stresses, i.e.

rSGa _-- SGP_ -_- SGCwer "1- SGCza = _'_Gw_ -_" SGCza. (52)

The appropriate definitions are

SGPa = fA SllW1THw1 dA,

SGC_, = fa sll bl 82g dA = _wT SGcwa_W Jr )v((_2R, _2t_),

(53)

m
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where .7r contains ,SGCz as z level kernel.

obtains 26

"_Gw# -- "SGPa d- _GCwa "-

Carrying out the algebraic manipulations one

0 A%¢ (54)

The term PI corresponds to the well known generalized core geometric stiffness of the

Total Lagrangian bar element. 4

The higher order term in (53) may be expressed as

•T'_,(62R, 62t¢) = .Ad_¢(_2s+¢TR62RT_-Ad_ =6z T (V((_TA,4#) + UOE.A4#;¢) ) _z. (55)

Thus

= ¢) (56)

Since the next-level target variables z include the finite rotation parametrization, matrices V

and U depend on that choice. They are the source of unsymmetries in the stiffness matrices

when certain rotational parametrizations are adopted, such as the incremental rotation vector.

For the rotational vector defined in (63), these matrices ave symmetric.

Geometric Stiffness due to Shear Stresses

The contribution of the shear stresses to the geometric stiffness is

5G_ = Sep_ + SGCw, + SGC,, = 8Gw_ + 5GC._. (57)

The appropriate definitions are

/A s12(WTHw2 + W2HW1) nu sla(WTHWa + WaHWl) dA
SGp_

(5s)f
SGC_

]A(S,2b2 + s,sb3) 52g dA = _wTSGcwr_W nu I.(62R, 62,_).

Carrying out manipulations one obtains the surprisingly simple form for ,SGwr

,Sa_ = SGp_ + SGCw_ = 0 • (59)
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The terms clue to the second variation of g become

./=', = _T6_R, Zr.A4T52t¢.

The stiffnesskernel carried forward to the z levelis

sacz, = v(._,) + u( _; _).

24

(60)

(61)

v

v

_=_

!J

t::::
=

10. TRANSFORMATION TO THE ROTATIONAL VECTOR

The next transformation stage passes from w to z, which is a 9-vector of generalized displace-

ments, also associated with a beam section, which embodies the parametrization of the cross

section rotation:

{ u0 a , 5z= 5a . (62)

Here a denotes the rotational vector parametrization defined by the standard formulas

a = axial &, R - exp(&T), (63)

and which may be extracted from R by

arcsin(r)
& = logR - axial (R T - R),

2r
z = ½l[axlal(R T - R)II. (64)

Because only the variations of w are known the relation between w and z is also of

differential type:

5w = ZSz, or 5w = Y(a) dY a

0 Y(a) 6,*

(65)

in which

' V(ct) = sinlalI ( sin l_al'_aa T 1-coslal_I,,,--q-+ _1 I,_1 ,/ I,_1_ i,:,1= a. (66)

Applying the transformations (65) we find for the internal force and the material and

principal-geometric components of the tangent stiffness matrix:

fz = zT('_a JF *_r), gMz = zT(_-_M)Z, KGPz -- zT(SGw)Z. (67)

L--
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The materialization of the geometric stiffness terms ,Sac.. and ,SGCzr for the rotational

vector is more complex. We state here only the final result: for U,.

0 0 0
U(Q ; O) = o o

syrnrn U" 0 0 0
v(_tr) = 0 v;

syrnm V'_

(68)

where

U r = clQT*1-4-c2 (Q (I_T -3- (I)TQ) +c3 (QT,OtotT + QT(:_I_ I + (_T_I)(:x T "4-ot(I)T(_) 3t-

c_(o_°(Q_+o_)+_Q(o._+°_) +Q_o_°I)+
c.Qra-,i, otgT + c_q r_roototr

in which

(69)
-_T

Vr = c2.A,4 ,. +C3Ot.AdT+CsototT_.4,.+CT(.Ad,.Ot T +otT.A,4,I)+csotT.tA_otctT (70)

dot T dot T

V_ = - c3_-X- T .AdrI - c4_--_1 M,.ototT+

(A _ ,._,_ ,.,,_ )c'_ _ dX, "_,'otT +ot.l_,'_'_T +°t -d--_l,M,.I +
(71)

sin 0/ 1 - cos a sin 0/- 0/cos 0/

el -" ----_O_ C2 ---- 0/2 _ C3 -- 0/3

cl + 3ca cl + 2c2 ca + 4c5

Ca= a2 , c5= 0/2 , cs= a2 , (72)

1 + Cl 3c3 -- 2c2 c5 -- 5c8

C7 "- O_2 _ C8 _- 0/2 _ C9 =- 0/2

A similar approach can be taken with (56), which defines ._',. The tangent stiffness matrix

can be obtained by superposing all contributions.

11. TRANSFORMATION TO FINITE ELEMENT FREEDOMS

The final stage introduces a finite element representation for the degrees of freedom. The beam

or beam assembly is divided into a set of two-node finite elements. Each of these nodes has
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three displacement degrees of freedom and three rotational degrees of freedom corresponding

to the three (X1, X2, X3) components of the rotational vector _. Each element in turn has

twelve freedoms which are collected in the array v T = {d, ¢_,,}T where d, collects the six

translational freedoms while e_,, collects the six rotations. The cross-section state vector z is

approximated inside each element by

dN dn d,

z = TX71 = D = Dv,

N _" o_.

(73)

where N is a matrix of linear shape functions. Since 6z = D 6v the final internal force vector

f and tangent stiffness matrix K of each element are obtained as

f= fL DTfz dL, K = fL DTKzD dL. (74)

where L is the element length.

The choice of shape functions for the rotational vector poses some subtle questions. In

small-deflection analysis it is common practice to select all Timoshenko beam shape func-

tions to be linear in X1. This choice obviously enforces nodal compatibility while preserving

constant curvature states. But for finite deflections a linear interpolation for the rotational

vector components cannot exactly represent a constant curvature state unless the rotations

are about a single axis (plane rotations). The same is true if the rotation matrix l:t(X_ ) is in-

terpolated linearly. On the other hand, linear interpolation of Euler parameters does preserve

the constant curvature state. This motivated a development of an interpolation scheme that

2 = 1 that orient the normal ofstarts from the 4 Euler parameters ei(X !), i = O, 1, 2, 3, _i e,

a cross section at X1. These are collected in the 4-vector e = { e0 el e2 e3 )T. Given the

eight end values e(0) and e(L) the interpolation that can copy a constant curvature vector

is found to be 26

e(_) = cos(() (1 tan(_) "_ e(O) + sin(()tan(eL) ] S_) E(Z), (75)

where _ = _X1,1 _L = ½_L, ,: = _. The constant curvature vector can be extracted

from the end values through the formula

1

0¢ :/_2"-_ [ (e'('L)- 2e0(L)I)e(0)- (e_ -2e0(0)I)e(0)] , (76)

This interpolation is then transformed to the variations in terms of the rotational vector.

Details are provided in Crivelli's thesis 26.
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12. NUMERICAL EXAMPLES

The proposed formulation is applied to a set of six problems

Small Deflection Analysis of a Cantilever Beam

27
l

U

w

This example evaluates the behavior of our formulation for small rotations and displacements,

in which case it should recover the full linear response. A two-dimensional cantilever beam

has length L = 5, cross-section area A = 4.8 x 10 -3 and moment of inertial I = 4.45 x 10 -5,

with elastic modulus E = 2.1 x 1011 and shear modulus G = 8.0775 x 10 l°. The beam is

loaded on its free end with a vertical force P = 600. Two sets of results are reported. The first

with the formulation as is, whereas in the second we introduce the residual bending flezibiIity

correction of McNea127. The purpose of this correction is to accelerate the convergence

of the linear C O bending elements, so that linear interpolation functions approximate the

behavior of Hermitian cubics. This behavior is desirable since this thin beam can be accurately

represented by a Bernoulli beam, for which the analytical solution is indeed cubic.

The numeric results are shown in Table 3 for meshes with increasing number of elements.

The second and third columns correspond to the tip deflection and rotation when no correction

is introduced while the fourth and fifth columns are the values obtained when the residual

bending flexibility is taken into account.

Number of Tip Deflection Tip Rotation Tip Deflection Tip Rotation
Elements w.o. correction w.o. correction w. correction w. correction

1 -2.016 x 10-3 -8.026 x 10-4 -2.684 x 10-3 -8.026 x 10-4

2 -2.517 x 10-3 -8.026 x 10-4 -2.684 x 10-3 -8.026 x 10-4

4 -2.643 x 10-3 -8.026 x 10-4 -2.684 x 10-3 -8.026 x 10-4

8 -2.74 x 10-3 -8.026 x 10 -4 -2.684 x 10-3 -8.026 x 10-4.

16 -2.682 x 10-3 -8.026 x I0-a -2.684 x 10-3 -8.026 x 10-4

Table 3: Comparison of results for the cantilever beam

for the small displacement case.

As expected for a Timoshenko beam element, 2s the displacements in the first case are

too stiff when the mesh is coarse, whereas the tip rotation is accurate. When the residual

bending flexibility correction is used, we obtain the exact solution for any mesh.
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Large Displacement and Rotation Analysis

The second example is one of the few nonlinear beam problem with a simple analytic solution.

It consists of a straight cantilever beam loaded with a moment M at its free end, as shown

in Figure 2.

Length L = 1000

Bending Stiffness El = 4 10 #

Figure 2: Straight Cantilever Beam Loaded by a
Tip Moment. Problem Definition.

The exact solution is a circle of radius r = EI/M. The beam has length L = 1000 and

bending stiffness EI = 4 x l0 s while the applied moment is M = 2_r x 105. The mesh

consists of 10 equally-spaced elements and the full load is applied in four increments. Using

full Newton, convergence is attMned in an average number of four iterations per increment.

Thedeflectedshapesfor half-loadan¢ifull-loadlevelsare shownin Figure3.

Cantilever Beam with Two Transversal Loads

This example consists of a two-dimensional cantilever beam with two vertical loads, one

applied at the free end and the other one close to mid-span, as shown in Figure 4. This

problem has been considered by several authors and an analytic solution is available, see e.g.

Ebner and Ucciferro. 29 : : .............

The cross-section area of this beam is A = 0.2, while the bending fiex!bi!ity is EI = 5 x 106

and the shear modulus is G = 1.153846 x 10 r. The full load is applied in ten equal increments.

The structure has been discretized by eight equally spaced finite elements.
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Figure 3: Straight Cantilever Beam Loaded by a
Tip Moment. Deformed Shapes.

m

W

q:o.a5 I p2=1"35
P

52.03

102.75

Bending Stiffness E1 ffi5 10 6
Shear Modulus G = 1.15 10 7

Area A = 0.2

ml¢

J

g

Fignzre 4: Straight Cantilever Beam Loaded by Two
Transversal Loads. Problem Definition.

Table 4 gives the tip displacements and rotation for different meshes and different for-

mulations. The results obtained by the present model are compared to those obtained by

Cardona 24 and to those provided by the analytic solution. Deformed configurations for se-

lected load levels are shown in Figure 5.

Large Displacement 3-D Analysis of 45-Degree Bend

m

I,,

M

m



m

h_

E

=

i = •

===w

L. A. CRIVELLI AND C. A. FELIPPA 30

Formulation

_zrdona

Present

Analytic

Elements

2 4 8

Longitudinal -28.99 -30.26 -30.62
Transversal - 65.86 - 66.63 - 66.87

Rotation -1.1 -1.06 - 1.05

Longitudinal -28.99 -30.26 -30.62
Transversal - 65.86 - 66.63 - 66.87

Rotation -1.1 - 1.06 - 1.05

Longitudinal -30.75 -30.75 -30.75
Transversal -66.96 -66.96 -66.96

Rotation - - -

Table 4: Comparison of results for the cantilever beam

with two transversal loads.

P=0

P = 0.4 Pmax

P = 0.6 Pmax

P = 0.8 Pmax

P = Pmax

Figure 5: Straight Cantilever Beam Loaded by Two
Transversal Loads. Deformed Shapes.

This example has been studied by Bathe and Bolourchi. 3° It consists of a cantilever 45-degree
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bend lying on a horizontal plane, subjected to an end-load normal to that plane, as shown in

Figure 6.
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m
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Figure 6: Curved Cantilever Bend Loaded by
Tip Load. Problem Definition.

The bend is an arc of a circle of radius r = 100 and the beam cross-section is a square

with sides of unit length. The material has elastic modulus E = 107 and a zero Poisson ratio.

The finite element mesh consist of 8 straight beam elements. The full load P = 600 is applied

in 6 equal increments.

Table 5 compares the results obtained by different formulations while the deflected shapes

corresponding to selected load levels are presented in Figure 7.

Formulation Load

300 450 600

Bathe et.al

Simo et. al

Cardona

Present

22.33, 58.84, 40.08

22.50, 59.20, 39.50

22.14, 58.64, 40.35

22.31, 58.85, 40.08

18.62, 53.32, 48.39

18.38, 52.11, 48.59

18.59, 53.34, 48.39

15.79,47.23,53.37

15.90,47.20,53.40

15.55,47.04,53.50

15.75,47.25, 53.37

Table 5: Comparison of results for the 45-degree bend cantilever beam

with a transversal tip load.
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P = 100

¥
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Figure 7: Curved Cantilever Bend Loaded by
Tip Load. Deflected Shapes.

This table shows that the result obtained by Cardona 24 are stiffer whereas those obtained

by Simo and Vu-Quoc 23 are more flexible than those obtained by Bathe et.al. 3° However,

these latter results can be taken as reference since they have also been obtained using a more

refined mesh. It can be seen that the results of the present formulation agree well with the

reference solution.

Williams' Toggle Beam

This problem consists of two thin plane beams rigidly jointed together and clamped at both

ends. The load P is applied at the apex of the structure. The geometry and physical

properties are given in Figure 8. Williams 31 solved this problem analytically by taking into

account the effects of finite changes in geometry as well as the effects of the axial force in

the flexural stiffness and the flexural modification of the axial stiffness. He also compared his

results to experimental data.

This problem was first solved numerically by Wood and Zienkiewicz 32 using five Total-
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Figure 8: William's Toggle. Problem Definition.
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Figure 9: William's Toggle. Load-Deflection curves.
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displacement control strategy to traverse the limit point. This problem was also analyzed by

Papadrakakis 33 using two Euler-Bernoulli beams, formulated under the assumption of large

displacements but moderate rotations. Nee and Haldar 35 solved this problem by using an

assumed stress formulation. We have solved this problem using five elements per member

together with the residual bending flexibility concept 27 to approximate the thin beam behav-

ior. Comparisons of the tip deflections versus load obtained by these different formulations

are given in Figure 9. We observe a good agreement between our results and experimental

measurements.

Twelve Member Frame

w

Z

This problem consists of a three-dimensional frame made of twelve members, with half of

them laid out as an hexagon, and the other half making up the diagonals of the hexagon.

The load is applied on the central node. The geometry and physical properties of the frame

are described in Figure 10.

L 24" J

F rl

4
Polar Moment Ix ffi 0.0331 in

Second Moments ly = Iz = 0.0203 in4

Young's Modulus E = 439.8 ksi
Shear Modulus G = 159 ksi
Area A = 0.494in z

1.75"

Figure 10: Twelve-Member Frame. Problem Definition.

--=

This frame is simply supported and the supports are allowed to move on the plane normal

to the load. To remove the translational rigid body modes and make the problem determinate,
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the central node is restricted against lateral displacement. The frame has been discretized

using one finite element for each member of the base and two elements for each diagonal

member.
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Figure 11: Twelve-Member Frame. Load-Deflection Curves.

The evolution of the deflection of the apex while the load is varied is given in Figure 11.

An incremental strategy with step control and a hyperelliptic constraint have been used to

traverse the limit point. The results obtained by the present formulation are compared to

those obtained by Papadrakakis, 33 Meek and Tan 34 and Nee and Haldar. 35 It can be noticed

that the present formulation displays a slightly stiffer behavior, which can be attributed to the

presence of the shear stress. The extra stiffness should disappear with more refined meshes.

13. CONCLUSIONS

We have constructed and tested a three-dimensional Timoshenko beam element based on the

Total Lagrangian description. The element has 12 degrees of freedom: 6 translations and
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6 finite rotations measured by the rotational vector. This particular set of nodal freedoms

reduces to the usual choice in small-deflection analysis. This uniformity of treatment allows

implementation in standard finite element codes without the necessity of making special

provisions to update the rotations. Furthermore, the formulation leads to a symmetric tangent

stiffness matrix for arbitrary motions. This attribute is particularly valuable in stability

analysis of complex structures, as it allows the use of symmetric eigensolvers near bifurcation

points.

The kinematics of the deformation is described using an inertial frame attached to the

undeformed configuration of the beam. This kinematic description has a potential advantage

in nonlinear dynamic calculations in that the mass matrix remains fixed, with the same

sparsity as in small-deflection analysis. The use of Green-Lagrange strains, conjugate PK2

stresses and the absence of hazardous a priori kinematic approximations (beyond those of the

Timoshenko beam model) effectively filters out arbitrary rigid body motions, and allows the

beam element to capture coupling effects between stretching, bending, torsion and transverse

shears within the elastic response regime. These abilities augur well for its future use in highly

flexible space structures, where the effect of those couplings can be extremely important in

stability, dynamics and control.

The discrete equations have been derived using the staged approach of the Core-

Congruential Formulation (CCF). In the innermost level, core equations are obtained at

the particle level. These physically transparent equations depend only on the form of the

internal energy density. A chain of transformations ensues in which the core equations are

referred to three sets of kinematic variables, two pertaining to cross sections and the third

one to the finite element nodal degrees of freedom. The choice of finite rotation measure is

introduced in the second stage. The choice of finite element interpolation and nodal free-

doms is introduced in the last stage. This "nesting"0ffers obvious advantages in fostering

programming modularity and maintaning flexibility as regards to decision changes.

We believe that the main contributions of the present work to computational nonlinear

mechanics are as follows.

1. The development of a new symmetric formulation for the analysis of the geometrically non-

linear response of three-dimensional beams that undergo arbitrary rotations. The Total

Lagrangian description maintains a fixed reference configuration, which is advantageous

in many classes of problems. No special treatment of the rotational degrees of freedoms

is required thus simplifying the treatment of boundary conditions. The symmetry and
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freedom-choice attributes simplifies the element implementation into stiffness-based finite

element codes.

2. The CCF methodology allows a systematic staged development of the Total Lagrangian

element equations that maintains physical visibility. The general core equations display

microscopic behavior, and are gradually specialized to macroscopic behavior in the trans-

formation phase. Behavioral approximations may be injected in the initial transformation

stages, whereas computational decisions as regards rotational parametrization and element

discretization may be deferred to the final transformation stages ..............

Extensive numerical experiments have been performed to validate and test the present

formulation and solution methods. These problems cover a wide range of structural behavior,

from plane to three-dimensional structures, including snap-throughand nonlinear bifurcation.

The ability of the present formulation to deal with large three-dimensional rotations and

displacements has been demonstrated. In addition, the beam model approaches the linear

beam behavior when the displacements and rotations are small. For very thin beams it is

well known that Timoshenko beam models may be stiffer than Euler-Bernouilli models. The

residual bending flexibility correction may improve this behavior when the displacements are

moderate.

Although the solution method is not a focus of this paper, it is noted that good Newton-

Raphson convergence rates have been attained for all the tested problems. This behavior

validates the consistency of the residual force and tangent stiffness computations.
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